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Abstract
Intrinsic waveforms associated with cylindrical and spherical Bessel functions
are obtained by eliminating the factors responsible for the inverse radius and
inverse square radius laws of wave power per unit area of wavefront. The
resulting expressions are Riccati–Bessel functions for both cases and these can
be written in terms of amplitude and phase functions of order v and wave
variable z. When z is real, it is shown that a spatial phase angle of the
intrinsic wave can be defined and this, together with its amplitude function,
is systematically investigated for a range of fixed orders and varying z. The
derivatives of Riccati–Bessel functions are also examined. All the component
functions exhibit different behaviour in the near field depending on the order
being less than, equal to or greater than 1/2. Plots of the phase angle can
be used to display the locations of the zeros of the general Riccati–Bessel
functions and lead to new relations concerning the ordering of the real zeros
of Bessel functions and the occurrence of multiple zeros when the argument of
the Bessel function is fixed.

PACS numbers: 02.30.−f, 02.30.Gp

1. Introduction

Bessel functions are fundamental to our understanding of wave phenomena since they are
solutions of the radial wave equation for problems having spherical and cylindrical symmetry
[1, 2]. Numerous examples of their use have accordingly appeared in scientific and engineering
literature concerning acoustic, elastic, electromagnetic and elementary particle waves [3–5].
The functions are written as J�(z), Y�(z) for cylindrical Bessel functions and j�(z), y�(z) for
spherical Bessel functions, in which z = kr where k is the propagation constant of the medium
and r is the radial position of the wave. However, physical differences exist between cylindrical
and spherical Bessel functions since their waves propagate, respectively, so as to obey inverse
radius and inverse square radius laws for the wave power per unit area of wavefront. Hence it
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follows that by eliminating the factors responsible for these differences, an intrinsic waveform
will be obtained with properties that are of fundamental interest. The required transformations
are

intrinsic cylindrical wave: ϕ�(z) =
√

πz

2
J�(z), χ�(z) =

√
πz

2
Y�(z)

and

intrinsic spherical wave: ϕ�+1/2(z) = z j�(z), χ�+1/2(z) = z y�(z),

where ϕν(z), χν(z) are Riccati–Bessel (R–B) functions of order ν and the only difference
now between the cylindrical and spherical R–B functions is that they have integer orders
ν = � = 0, 1, 2, . . . and half-odd integer orders ν = �+1/2 = 1/2, 3/2, 5/2, . . . , respectively.
The modified functions satisfy the R–B differential equation and describe waves of constant
power when z is real. Other types of intrinsic wave are also possible in which the order is
neither integer nor half-odd integer and these have been used to describe wave propagation in
media where the refractive index varies continuously as a mathematical power law in radius
[5, 6].

A further important area of application of R–B functions is in inverse-scattering theory.
This is concerned with a systematic study of the solutions and their properties for various
scattering problems in nuclear, optical and acoustic physics. Examples of particular problems
that have been examined are the derivation of the scattering amplitude from the differential
scattering cross section and the construction of the scattering potential from the scattered
phase shifts [7, 8]. In both cases it was assumed that scattering occurred at a spherically
symmetric potential for particles of fixed energy that could be represented by scalar fields.
The last condition clearly excludes light scattering at a sphere. Nevertheless in the case of
a homogeneous sphere, a simple mathematical construction has been developed using R–B
functions that uniquely inverts the Mie scattering coefficients to obtain the refractive index
and radius of the particle [9].

The present paper examines how the intrinsic wave disturbance can be represented in a
form that coincides with our physical intuition and gives an analysis of its properties for all
positive and negative orders of ν when the wave variable z is real and positive. Comparisons
are then be made between selected properties of the wave for fixed order when z is varied.
The results clearly demonstrate a close interrelationship between cylindrical Bessel, spherical
Bessel and R–B functions.

Extensive lists of the properties of cylindrical and spherical Bessel functions are given in
standard mathematical handbooks such as [2]. The most important of these equations have
been converted for R–B functions and the results are presented in the appendix.

2. Basic relations

The differential equation of R–B functions is(
d2

dz2
+ 1 − µ1

z2

)
f (s)

ν (z) = 0, ν = � + δ

for −1/2 < δ � 1/2 and � = 0,±1,±2, . . . . (2.1)

Where z = kr in which k is assumed to be a real propagation constant and r is the radial
position relative to the origin, and µ1 = ν2 − 1/4. The label s has values 1– 4 and indicates
the type of function: Riccati–Bessel ϕν(z), Riccati–Neumann χν(z), Riccati–Hankel ζ (1)

ν (z)

(outwards wave) and Riccati–Hankel ζ (2)
ν (z) (inwards wave), respectively, and ν is the order
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of the function which is real but otherwise unrestricted. For a particular value of δ, a complete
set of solutions of ϕ�+δ(z) is generated for � = 0, 1, 2, . . . . Specific symbols are used for the
different types of functions and these are defined in terms of an intrinsic amplitude Mν(z) and
a spatial phase function θν(z) by

f (1)
ν (z) = ϕν(z) = Mν(z) sin θν(z) (2.2a)

f (2)
ν (z) = χν(z) = −Mν(z) cos θν(z) (2.2b)

f (3)
ν (z) = ζ (1)

ν (z) = −i Mν(z) exp iθν(z) (2.2c)

f (4)
ν (z) = ζ (2)

ν (z) = i Mν(z) exp −iθν(z). (2.2d)

The derivative functions with respect to z are similarly defined:
ϕ′

ν(z) = Nν(z) cos φν(z)

χ ′
ν(z) = Nν(z) sin φν(z)

ζ (1)′
ν (z) = Nν(z) exp iφν(z)

ζ (2)′
ν (z) = Nν(z) exp −iφν(z).

(2.3)

As z is real, the amplitudes Mν(z) and Nν(z) are both defined as real positive functions.
Expressions for the new functions are

Mν(z) =
√

[ϕν(z)]2 + [χν(z)]2 (2.4a)

tan θν(z) = −ϕν(z)

χν(z)
(2.4b)

Nν(z) =
√

[ϕ′
ν(z)]2 + [χ ′

ν(z)]2 (2.4c)

tan φν(z) = χ ′
ν(z)

ϕ′
ν(z)

. (2.4d)

In addition, interrelations between the functions can be found from the Wronskian equation

W [ϕν(z), χν(z)] = 1. (2.5)

These are

Mν(z)Nν(z) cos 
ν(z) = 1 (2.6a)

Mν(z) = 1√
θ ′
ν(z)

(2.6b)

φν(z) = θν(z) + 
ν(z) (2.6c)

Nν(z) =
√

θ ′
ν(z)

cos 
ν(z)
(2.6d)

tan 
ν(z) = −[ϕν(z)ϕ
′
ν(z) + χν(z)χ

′
ν(z)]

= −Mν(z)M
′
ν(z) = 1

2

θ ′′
v (z)

[θ ′
ν(z)]

2
. (2.6e)

Other useful expressions can be obtained by differentiation,

N ′
ν(z) = tan 
ν(z)

Nν(z)

(
1 − µ1

z2

)

θ ′
ν(z) φ′

ν(z) =
(

1 − µ1

z2

)
cos2 
ν(z).

(2.7)
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3. Spatial phase angle, θν(z)

A simple physical interpretation of (2.2c) is that it represents the profile of an outwards intrinsic
wave in z-space of constant frequency at a fixed time. This consists of crests and troughs
distributed between a source at the origin and infinity. Thus the amplitude Mν(z) determines
the heights and depths of the profile while the spatial phase angle θν(z) controls the locations
at which the profile passes through its maxima, minima and zeros. Such a physical phase
angle must therefore be both single valued and increase monotonically as the wave moves
outwards from the source. Furthermore, it will be shown here that for all non-negative orders,
the intrinsic wave has an initial phase angle of zero which ensures that ϕν(z) has its smallest
zero at the origin. In the far field, the intrinsic wave is approximated by a plane wave with

θν(z) �
z→∞ z − γ 0

ν Mν(z) �
z→∞ 1, (3.1)

where γ 0
ν is a phase constant that depends only on ν.

A mathematical description of the wave, on the other hand, represents Mν(z) exp iθν(z)

of (2.2c) by an Argand diagram with real and imaginary parts −χν(z) and ϕν(z), respectively.
Thus the phase angle is determined, in its most general form, by the multivalued function

θν(z) = tan−1

[
−ϕν(z)

χν(z)

]
(3.2a)

obtained by inverting (2.4b). This phase can nevertheless be made single valued and brought
into agreement with the physical property by restricting the angle to the positive half of the
branch of (3.2a) that satisfies the initial condition

θν(0) = 0; 0 � ν. (3.2b)

Complete expressions for θν(z) and φν(z) over the full range 0 � z < ∞ then have the forms

θν(z) = z − γ 0
v + γν(z) (3.3a)

φν(z) = z − γ 0
v + γν(z) + 
ν(z), (3.3b)

where the latter relation is obtained by using (2.6c). Here γν(z) is an auxiliary phase angle and

ν(z) is a phase shift. The different phase functions now have the following limiting values
for far and near fields:

lim
z→∞ γν(z) = lim

z→∞ 
ν(z) = 0

lim
z→∞ θν(z) = lim

z→∞ φν(z) = z − γ 0
v

and

lim
z→0

γν(z) = γ 0
v

lim
z→0

φν(z) = lim
z→0


ν(z) = a(ν),
(3.4)

where a(ν) is a constant that depends only on the magnitude of ν.

In the special case of ν = 1/2, the above formalism leads to

ϕ1/2(z) = sin z χ1/2(z) = −cos z

ζ
(1)
1/2(z) = −i exp(iz) ζ

(2)
1/2(z) = i exp(−iz)

and
ϕ′

1/2(z) = cos z χ ′
1/2(z) = sin z[

ζ
(1)
1/2(z)

]′ = exp(iz)
[
ζ

(2)
1/2(z)

]′ = exp(−iz),
(3.5a)
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so that

θ1/2(z) = φ1/2(z) = z

M1/2(z) = N1/2(z) = 1


1/2(z) = γ1/2(z) = a(1/2) = 0

(3.5b)

and

γ 0
1/2= 0. (3.5c)

4. The phase constant, γ0
v

The necessity for a phase constant follows directly from the existence of the recurrence
relations of the R–B functions:

f
(s)
ν+1(z) = (ν + 1/2)

z
f (s)

ν (z) − df (s)
ν (z)

dz

f
(s)
ν−1(z) = (ν − 1/2)

z
f (s)

ν (z) +
df (s)

ν (z)

dz

(4.1)

and the constant can be deduced, without loss of generality, by applying these relations to the
Riccati–Hankel function ζ (1)

ν (z) in the asymptotic limiting case of z → ∞. Thus, the function
simplifies to ζ (1)

ν (z) → −i exp i
(
z − γ 0

ν

)
and the relations become

ζ
(1)
ν+1(z) �

z→∞ −dζ (1)
ν (z)

dz
= −iζ (1)

ν (z)

ζ
(1)
ν−1(z) �

z→∞
dζ (1)

ν (z)

dz
= iζ (1)

ν (z)

to give

exp
(
iγ 0

ν±1

) = ±i exp
(
iγ 0

ν

)
.

After � recursions,

exp(iγ 0
ν±�) = (±i)� exp

(
iγ 0

ν

)
and

γ 0
ν±� = γ 0

ν ± �
π

2
(4.2)

are obtained. A plot of the phase constant against ν will therefore generate a straight line of
gradient π

2 that passes through the origin at ν = 1/2 in accordance with (3.5c). Thus,

γ 0
ν = (ν − 1/2)

π

2
. (4.3)

5. Negative orders

Inspection of the differential equation (2.1) indicates that it is invariant when the order is
reversed in sign and because of this R–B functions of negative orders are possible solutions
of the equation. It then follows that the new solutions may be derived by simply changing the
signs of ν in the original solutions. Hence the Riccati–Hankel function ζ (1)

ν (z), when written
in the form of (A2c),

ζ (1)
ν (z) = −i

[ϕ−ν(z) − e−ivπϕν(z)]

sin νπ

5
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1.0
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0.0

1/
M

ν(z
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3.02.52.01.51.00.50.0
z

 ν=3

 ν=0

 ν=1/2

Figure 1. The reciprocal Mν(z) function for ν = 0 to 3 in steps of 1/4.

transforms into

ζ
(1)
−ν (z) = i

[ϕν(z) − eivπϕ−ν(z)]

sin νπ
= exp(ivπ)ζ (1)

ν (z) (5.1)

under the operation ν → −ν. Similarly,

ζ (1)
ν (z) = −i Mν(z) exp iθν(z)

becomes

ζ
(1)
−ν (z) = −i M−ν(z) exp iθ−ν(z)

and these yield

M−ν(z) exp iθ−ν(z) = exp(iνπ)Mν(z) exp iθν(z) (5.2)

on substitution into (5.1). But since the amplitudes Mν(z) and M−ν(z) are both defined as
positive functions, the previous equation can be decomposed into

M−ν(z) = Mν(z) (5.3a)

and

θ−ν(z) = θν(z) + νπ. (5.3b)

Also,

γ 0
−ν = γ 0

ν − νπ γ−ν(z) = γν(z) (5.4)

from (3.3a) and (4.3). Further symmetry analysis on the remaining properties shows that
Nν(z) and 
ν(z) are even functions of ν and

φ−ν(z) = φν(z) + νπ. (5.5)

6. General analysis

The general behaviour of the phase and amplitude functions of the R–B functions is presented
in figures 1–3, where the order is incremented between 0 and 3 in steps of 1/4 and z is varied.
All three functions 1/Mν(z), θν(z) and γν(z) are seen to be monotonic and the gradients of

6
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6.28

4.71

3.14

1.57

0.00

θ ν(z
) 
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6543210

z

ν=3

ν=1/2

ν=0

a1

a2

b1

b2

ν=−1

ν=−1/2

Figure 2. The spatial phase angle θν(z) for ν = −1 to 3 in steps of 1/4. Negative orders are
included for comparison.

3.93

3.14

2.36

1.57

0.79

0.00

-0.79

γ ν(z
) 

in
 r

ad
s

6543210

z

ν=3

ν=0 ν=1/2

Figure 3. The auxiliary phase γν(z) for ν = 0 to 3 in steps of 1/4.

the two phase angles are simply related to the amplitude by

1

M2
ν (z)

= θ ′
ν(z) = 1 + γ ′

ν(z)

through (2.6b) and (3.3a). As a consequence, the traces for ν = 1/2 are especially simple
being straight lines of unit or zero gradient; M1/2(z) = 1, θ ′

1/2(z) = 1 and γ ′
1/2(z) = 0.

For other orders the functions generate curves that either approach or become parallel to the
ν = 1/2 trace in the asymptotic limit. Despite this, the most striking differences in the graphs
occur at the origin and lead to a classification according to (a) 0 � ν < 1/2, (b) ν = 1/2 or
(c) ν > 1/2 as exemplified in table 1.
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Figure 4. The reciprocal Nν(z) function for ν = 0 to 3 in steps of 1/4.
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Figure 5. The spatial phase angle φν(z) for ν = 0 to 3 in steps of 1/4.

Table 1. Initial values of the phase and amplitude functions.

Function 0 � ν < 1/2 ν = 1/2 ν > 1/2

Mν(0) 0 1 +∞
θν(0) 0 0 0
γν(0) <0 0 >0
Nν(0) +∞ 1 +∞
φν(0) −π/2 0 π/2

ν(0) −π/2 0 π/2

In the case of the derivatives of the R–B functions, the properties of interest are 1/Nν(z),
φν(z) and 
ν(z) which are plotted in figures 4–6. Only the last of these is monotonic in z,
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Figure 6. The phase shift 
ν(z) for ν = 0 to 3 in steps of 1/4.

as 1/Nν(z) and φν(z) exhibit maxima and minima, respectively, at z = √
µ1 for ν > 1/2

according to (2.7). Initial values of the functions are also included in table 1.

6.1. Near-field analysis

Values of the functions near the origin can be generally found from solutions of (2.1) in the
form of ascending series in z,

ϕ±ν(z) = √
π

[
z

2

] 1
2 ±ν ∞∑

p=0

[−z2

4

]p

p!� (1 + p ± ν)
, (6.1)

by retaining only the dominant terms of ϕν(z), χν(z), ϕ
′
ν(z) and χ ′

ν(z) as z → 0. This leads
to three separate cases of order 0, 1/2 and v that need to be considered for the amplitude and
phase functions. The R–B functions therefore simplify into

ϕ0(z) �
√

πz

2
ϕ1/2(z) � z ϕν(z) �

√
π

�(1 + ν)

[ z

2

] 1
2 +ν

χ0(z) �
√

2z

π
l(z) χ1/2(z) � −1 +

z2

2
χν(z) � −�(ν)√

π

[ z

2

] 1
2 −ν

,

(6.2)

where l(z) = ln
(

z
2

)
+ γ in which γ is the Euler–Mascheroni constant. Combinations of these

also yield

M0(z) �
√

2z

π
|l(z)| M1/2(z) = 1 Mν(z) � �(ν)√

π

[ z

2

] 1
2 −ν

θ0(z) � − π

2l(z)
θ1/2(z) = z θν(z) � π

ν �2(ν)

[ z

2

]2ν

γ0(z) � −π

4
− z − π

2l(z)
γ1/2(z) = 0 γν(z) � γ 0

ν − z +
π

ν �2(ν)

[ z

2

]2ν

,

(6.3)

to show that θν(z) � 0, θν(z) → 0 in the limit z → 0 for ν � 0 and Mν(0) = 0, 1 and ∞
when 0 � ν < 1/2, ν = 1/2 and ν > 1/2, respectively. Expressions for the auxiliary phase

9
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angles were found from (3.3a) by

γν(z) = γ 0
v − z + θν(z).

Other functions are

N0(z) � 1√
2πz

|l(z) + 2| N1/2(z) = 1 Nν(z) � |2ν − 1|�(ν)

4
√

π

[ z

2

]− 1
2 −ν

φ0(z) � −π

2
− π

2 [l(z) + 2]
φ1/2(z) = z φν(z) � ±π

2
−

(
2ν + 1

2ν − 1

)
θν(z)


0(z) � −π

2
+

π

l(z) [l(z) + 2]

1/2(z) = 0 
ν(z) � ±π

2
−

(
4ν

2ν − 1

)
θν(z).

(6.4)

Here the upper (lower) signs of π
2 apply to orders greater (less) than 1/2 and are associated

with signs of tan φν(z) and tan 
ν(z) in

tan 
ν(z) � (2ν + 1)

4ν
tan φν(z) � (2ν − 1)

4ν θν(z)
. (6.5)

All the values listed in table 1 can accordingly be explained.

6.2. Far-field analysis

In the far field, when ν is fixed and z → ∞ (2.1) has solutions that contain asymptotic series

ζ (1)
ν (z) = −i [Pν(z) + iQν(z)] exp i

(
z − γ 0

ν

)
ζ (2)
ν (z) = i [Pν(z) − iQν(z)] exp −i

(
z − γ 0

ν

)
,

(6.6)

where

Pν(z) = 1 − µ1µ2

2!(2z)2
+

µ1µ2µ3µ4

4!(2z)4
− · · ·

Qν(z) = µ1

1!(2z)
− µ1µ2µ3

3!(2z)3
+

µ1µ2µ3µ4µ5

5!(2z)5
− · · ·

(6.7)

in which µ0 = 1 and µS = ν2 − (s − 1/2)2. A comparison of (2.2c) and (2.2d) with (6.6)
then yields

Pν(z) ± iQν(z) = Mν(z) exp [± iγν(z)] (6.8a)

and allows the amplitude and auxiliary phase to be defined by

M2
ν (z) = P 2

ν (z) + Q2
ν(z)

= 1 +
1

2

µ1

z2
+

1.3

2.4

µ1µ2

z4
+

1.3.5

2.4.6

µ1µ2µ3

z6
+ · · · (6.8b)

γν(z) = tan−1

[
Qν(z)

Pν(z)

]
, (6.8c)

where the branch of γν(z) is fixed by the condition γν(0) = γ 0
ν . Also,

tan 
ν(z) = −1

2

[
M2

ν (z)
]′

= 1

2

µ1

z3

[
1 +

3

2

µ2

z2
+

3.5

2.4

µ2µ3

z4
+ · · ·

]
. (6.9)

10
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Table 2. Initial values of R–B functions.

Function 0 � ν < 1/2 ν = 1/2 ν > 1/2

ϕν(0) 0 0 0
χν(0) 0 −1 −∞
ϕ′

ν(0) +∞ 1 0
χ ′

ν(0) −∞ 0 +∞

Limiting forms of the functions as z → ∞ are

θν(z) � z − γ 0
ν +

µ1

2z
[Mν(z)]

−1 � 1 − µ1

4z2

φν(z) � z − γ 0
ν +

µ1

2z
[Nν(z)]

−1 � 1 +
µ1

4z2


ν(z) � µ1

2z3
γν(z) � µ1

2z
.

(6.10)

The sign of µ1,which is negative for 0 � ν < 1/2 or positive when ν > 1/2, then
determines whether a function in figures 1–6 approaches its limiting value from below or
above. Furthermore by extrapolating the asymptotes of θν(z) and φν(z), the intercepts on the
vertical axes are

−γ 0
ν = −(ν − 1/2)

π

2
.

7. Zeros of R–B Functions

The determination of the locations of the zeros of R–B functions requires different
considerations depending on whether these are at or away from the origin. In the former
case, it has been shown in table 1 that the amplitude factors can have values of 0, 1 or ∞ while
the phase angles may be −π/2, 0 or π/2. Thus to find which of the R–B functions have null
values, we return to the simplified expressions of (6.2) to obtain table 2.

Away from the origin, the amplitude functions Mν(z)and Nν(z) are both finite and nonzero
and so R–B functions will be zero only when the phase angles θν(z) or φν(z) are integer
multiples of π/2. Four conditions are therefore of interest and these are displayed as horizontal
lines labelled as, bs in figure 2 and a′s, b′s in figure 5. The locations of the zeros αν,s, βν,s

of ϕν(z), χν(z) and α′
ν,s , β

′
ν,s of ϕ′

ν(z), χ
′
ν(z) are then found from where the lines intersect the

respective traces. Computed values of the zeros in radians (upper) and relative values in units
of π/2 (lower) are given in tables 3 and 4. But in the case of β ′

ν,1, figure 5 shows there is
no intersection with the line b′1 when ν > 1/2 and N.S. is entered in table 4 to indicate no
solution. Expressions for the associated R–B functions at the zeros, where s = 1, 2, 3, . . . ,

are

Case A : θν(αν,s) = sπ

ϕν(αν,s) = 0 χν(αν,s) = (−1)s−1Mν(αν,s)

ϕ′
ν(αν,s) = (−1)s

Mν(αν,s)
χ ′

ν(αν,s) = (−1)s tan 
ν(αν,s)

Mν(αν,s)
.

(7.1a)

Case B : θν(βν,s) = (2s − 1) π
2

ϕν(βν,s) = (−1)s−1Mν(βν,s) χν(βν,s) = 0

ϕ′
ν(βν,s) = (−1)s tan 
ν(βν,s)

Mν(βν,s)
χ ′

ν(βν,s) = (−1)s−1

Mν(βν,s)
.

(7.1b)
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Table 3. Zeros of ϕν(z) and χν(z) in radians (upper) and units of π/2 (lower).

ν βν,1 αν,1 βν,2 αν,2 βν,3 αν,3

0 0.8936 2.4048 3.9577 5.5201 7.0861 8.6537
0.5689 1.5309 2.5196 3.5142 4.5112 5.5091

1/4 1.2417 2.7809 4.3408 5.9061 7.4737 9.0424
0.7905 1.7704 2.7634 3.7599 4.7579 5.7566

1/2 1.5708 3.1416 4.7124 6.2832 7.8540 9.4248
1.0000 2.0000 3.0000 4.0000 5.0000 6.0000

3/4 1.8881 3.4910 5.0748 6.6526 8.2278 9.8016
1.2020 2.2224 3.2307 4.2352 5.2380 6.2399

1 2.1971 3.8317 5.4297 7.0156 8.5960 10.173
1.3987 2.4393 3.4567 4.4663 5.4724 6.4767

5/4 2.5001 4.1654 5.7782 7.3729 8.9592 10.541
1.5916 2.6518 3.6785 4.6937 5.7036 6.7105

3/2 2.7984 4.4934 6.1213 7.7253 9.3179 10.904
1.7815 2.8606 3.8969 4.9181 5.9320 6.9418

7/4 3.0929 4.8166 6.4596 8.0732 9.6725 11.264
1.9690 3.0663 4.1123 5.1396 6.1577 7.1707

2 3.3842 5.1356 6.7938 8.4172 10.023 11.620
2.1544 3.2694 4.3251 5.3586 6.3812 7.3974

9/4 3.6730 5.4511 7.1243 8.7577 10.371 11.973
2.3383 3.4703 4.5355 5.5753 6.6024 7.6221

5/2 3.9595 5.7635 7.4516 9.0950 10.716 12.323
2.5207 3.6692 4.7438 5.7901 6.8218 7.8450

11/4 4.2441 6.0730 7.7759 9.4294 11.057 12.670
2.7019 3.8662 4.9503 6.0029 7.0394 8.0662

3 4.5270 6.3802 8.0976 9.7610 11.396 13.015
2.8820 4.0618 5.1551 6.2140 7.2552 8.2857

Case C :φν(α
′
v,s) = (2s − 1) π

2

ϕν(α
′
v,s) = (−1)s−1

Nν(α′
v,s)

χν(α
′
v,s) = (−1)s tan 
ν(α

′
v,s)

Nν(α′
v,s)

ϕ′
ν(α

′
v,s) = 0 χ ′

ν(α
′
v,s) = (−1)s−1Nν(α

′
v,s).

(7.1c)

Case D :φν(β
′
ν,s) = (s − 1) π

ϕν(β
′
ν,s) = (−1)s tan 
ν(β

′
ν,s)

Nν(β ′
ν,s)

χν(β
′
ν,s) = (−1)s

Nν(β ′
ν,s)

ϕ′
ν(β

′
ν,s) = (−1)s−1Nν(β

′
ν,s) χ ′

ν(β
′
ν,s) = 0.

(7.1d)

An alternative procedure for finding the zeros is illustrated in figures 7 and 8 for ν = 0, 2 and
4. Using (3.3), the relations for θν(αν,s), θν(βν,s), φν(α

′
v,s) and φν(β

′
ν,s) above are converted

into

γν(αν,s) = (2s + ν − 1/2)
π

2
− αν,s (7.2a)

γν(βν,s) = (2s + ν − 3/2)
π

2
− βν,s (7.2b)

γν(α
′
v,s) + 
ν(α

′
v,s) = (2s + ν − 3/2)

π

2
− α′

ν,s (7.2c)
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Figure 7. Graphical determination of zeros of ϕν(z) and χν(z) for ν = 0, 2 and 4.

Table 4. Zeros of ϕ′
ν(z) and χ ′

ν(z) in radians (upper) and units of π/2 (lower). N.S. indicates no
solution exists.

ν β ′
ν,1 α′

ν,1 β ′
ν,2 α′

ν,2 β ′
ν,3 α′

ν,3

0 0.1421 0.9408 2.4110 3.9594 5.5208 7.0864
0.0905 0.5989 1.5349 2.5206 3.5148 4.5114

1/4 0.2001 1.2624 2.7841 4.3418 5.9066 7.4739
0.1274 0.8037 1.7724 2.7641 3.7602 4.7581

1/2 0.0000 1.5708 3.1416 4.7124 6.2832 7.8540
0.0000 1.0000 2.0000 3.0000 4.0000 5.0000

3/4 N.S. 1.8711 3.4878 5.0737 6.6521 8.2275
1.1912 2.2204 3.2299 4.2348 5.2378

1 N.S. 2.1659 3.8255 5.4274 7.0145 8.5954
1.3789 2.4354 3.4553 4.4656 5.4721

5/4 N.S. 2.4564 4.1564 5.7748 7.3713 8.9583
1.5638 2.6460 3.6765 4.6928 5.7032

3/2 N.S. 2.7437 4.4817 6.1168 7.7230 9.3166
1.7467 2.8531 3.8942 4.9166 5.9311

7/4 N.S. 3.0283 4.8025 6.4540 8.0704 9.6709
1.9279 3.0574 4.1087 5.1378 6.1568

2 N.S. 3.3108 5.1192 6.7872 8.4139 10.022
2.1077 3.2589 4.3207 5.3565 6.3802

9/4 N.S. 3.5913 5.4326 7.1168 8.7538 10.369
2.2863 3.4584 4.5308 5.5730 6.6011

5/2 N.S. 3.8702 5.7429 7.4431 9.0906 10.713
2.4638 3.6561 4.7384 5.7872 6.8201

11/4 N.S. 4.1478 6.0506 7.7665 9.4244 11.054
2.6406 3.8519 4.9443 5.9998 7.0372

3 N.S. 4.4241 6.3559 8.0872 9.7555 11.393
2.8165 4.0464 5.1483 6.2105 7.2530
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Figure 8. Graphical determination of zeros of ϕ′
ν(z) and χ ′

ν(z) for ν = 0, 2 and 4.

γν(β
′
ν,s) + 
ν(β

′
ν,s) = (2s + v − 5/2)

π

2
− β ′

ν,s . (7.2d)

However all four of these relations are invariant under the joint operations of s → s − p and
ν → v + 2p when p is an integer. As a consequence, the lines labelled a3 and b3 in figure 7
intersect the plots of γ0(z), γ2(z) and γ4(z) to give the zeros α0,3 = 8.6537(5.5091),

α2,2 = 8.4172 (5.3586), α4,1 = 7.5883 (4.8309) and β0,3 = 7.0861 (4.5112), β2,2 =
6.7938 (4.1123), β4,1 = 5.6452 (3.5938), respectively, where the first of the values is in
radians and the second in units of π/2. Similarly lines a4and b4 each intersect the plots γ0(z),
γ2(z), γ4(z) and γ6(z) to yield more zeros. The same strategy can be applied to figure 8
to find the zeros of ϕ′

ν(z) and χ ′
ν(z) but the intersects are now with the combined function

γν(z) + 
ν(z). It is clear from figures 7 and 8 that the crossing points converge rapidly with
increasing s to give the limiting expressions:

αν,s �
s→∞(2s + ν − 1/2)

π

2
, βν,s �

s→∞(2s + ν − 3/2)
π

2
,

α′
ν,s �

s→∞(2s + ν − 3/2)
π

2
, β ′

ν,s �
s→∞(2s + ν − 5/2)

π

2
.

(7.3)

For example, the zeros β0,4 = 10.2223 (6.5077), β2,3 = 10.0235 (6.3811), β4,2 =
9.3616 (5.9598) and α′

0,4 = 10.2225 (6.5078), α′
2,3 = 10.0215 (6.3799), α′

4,2 =
9.3481 (5.9512) should be compared with the limit value of 10.2102 (6.5000).

8. Discussion

The solutions of the R–B differential equation when z is real have been examined in detail and
it is shown that an R–B function can be usefully represented in terms of an amplitude function
Mν(z) and a spatial phase function θν(z). Indeed, the phase angle is a common property of all
Bessel functions since (3.2) can be simply extended to cover cylindrical and spherical waves
through

θν(z) = tan−1

[
−ϕν(z)

χν(z)

]
= tan−1

[
−Jν(z)

Yν(z)

]
(8.1a)

14
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and

lim
z→0

ϕν(z)

χν(z)
= lim

z→0

Jν(z)

Yν(z)
= 0, (8.1b)

subject to the initial phase condition

θν(0) = 0; 0 � ν. (8.1c)

Thus, cylindrical Bessel and spherical Bessel functions can be written as

J�(z) =
√

2

πz
ϕ�(z) =

√
2

πz
M�(z) sin θ�(z) (8.2a)

Y�(z) =
√

2

πz
χ�(z) = −

√
2

πz
M�(z) cos θ�(z) (8.2b)

and

j�(z) = 1

z
ϕ�+1/2(z) = 1

z
M�+1/2(z) sin θ�+1/2(z) (8.2c)

y�(z) = 1

z
χ�+1/2(z) = −1

z
M�+1/2(z) cos θ�+1/2(z), (8.2d)

where � = 0, 1, 2, . . . . It should be noted that at the origin, ϕν(z) is equal to zero for all
non-negative orders while the Bessel functions J0(0) = j0(0) = 1 but J�(0) = j�(0) = 0 for
� > 0. This contrasts with χν(z) which can be equal to zero when 0 � ν < 1/2, −1 for
ν = 1/2 and is singular when 1/2 < ν < ∞ whereas Y�(z), y�(z) are always singular at the
origin.

All three Bessel function have a phase angle

θν(z) = z − γ 0
v + γν(z), (8.3)

in which the phase constant is γ 0
ν = (ν − 1/2) π

2 and the auxiliary phase angle γν(z) is a
monotonic function of z such that γν(0) = γ 0

ν , γν(z) �
z→∞ tan−1

[
Qν(z)

Pν(z)

]
with lim

z→∞ γν(z) = 0.

Moreover, when ν = � + 1/2,

γ�+1/2(z) = tan−1

[
Q�+1/2(z)

P�+1/2(z)

]
(8.4)

is an exact relation over the complete range 0 � z < ∞ provided that the branch of the
auxiliary phase angle is specified as that for which γ�+1/2(0) = �π

2 . Figures 2 and 3 illustrate
the monotonic variation of θν(z) and γν(z) with z, and exhibit an ordering of the functions
in which: θν−δ(z) > θν(z) > θν+δ(z) and γν−δ(z) < γν(z) < γν+δ(z) for δ positive. It also
follows that the zeros of ϕν(z) and χν(z) will be ordered according to αν−δ,s < αν,s < αν+δ,s

and βν−δ,s < βν,s < βν+δ,s . Furthermore, the zeros of ϕν(z), χν(z) in table 3 agree with the
listed values of the zeros of cylindrical Bessel functions Jν(z), Yν(z) for v = 0, 1, 2, 3 and
spherical Bessel functions j�(z), y�(z) when � = v − 1/2, v = 1/2, 3/2, 5/2.

A few plots of negative order, computed by (5.3b), are included in figure 2 for comparison.
However, more importantly, the graph displays the locations of the various zeros of ϕν(z) and
χν(z) and it may be used to examine the general properties and relations associated with the
zeros of Bessel functions. Some examples are given below.

(a) The zeros of Bessel functions of real order ν � 0 are limited by the inequalities

α0,s(z) � αν,s(z) (8.5a)
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and

β0,s(z) � βν,s(z), (8.5b)

where s = 1, 2, 3, . . . .

(b) The plots of ν = 1/2 and v = −1/2 are parallel lines of unit gradient in which the
former passes through the origin and the latter has an intercept of π/2 with the vertical axis.
Thus, for −1/2 � ν � 1/2, the zeros of ϕν(z) satisfy the relation

(2s + ν − 1/2)
π

2
� αν,s � sπ, (8.6a)

which is equivalent to that of [10]. Similarly, for χν(z) the zeros are in the range

(2s + ν − 3/2)
π

2
� βν,s � (2s − 1)

π

2
. (8.6b)

(c) Flajolet and Schott [11] showed that the equation Jν(2) = 0 has no positive zeros.
But it is immediately clear from figure 1 that no positive zeros exist for Jν(z) below
z = α0,1 = 2.4048 and for Yν(z) below z = β0,1 = 0.8936.

(d) It is possible for Bessel functions of fixed argument and v � 0 to have none, one or
multiple zeros and indeed common pairs of zeros have been previously computed [12, 13] or
investigated using a functional-analytic approach [14]. Nevertheless, we can see directly from
the graph that when v � 0 there are n multiple zeros of ϕν(z) and χν(z) for a fixed value of z

in the ranges α0,n � z < α0,n+1 and β0,n � z < β0,n+1, respectively, where α0,0 = β0,0 = 0 for
n = 0. Thus for ϕν(z) or χν(z) there are no positive zeros within the ranges 0 � z < 2.4048 or
0 � z < 0.8936, only single zeros within 2.4048 � z < 5.5201 or 0.8936 � z < 3.9577 and
pairs of zeros in the ranges 5.5201 � z < 8.6537 or 3.9577 � z < 7.0861. At z = 5.5201,

one of the zeros will be α0,2 situated on the a2 line and the other zero is obtained by dropping
a vertical line from α0,2 to intersect the a1 line at v = 2.3050 so as to give α2.3050,1 as the
second zero. A similar process, involving the b2 and b1 lines, can be followed for χν(z) and
gives the first pair of zeros as β0,2 and β2.4984,1 at z = 3.9577.

From figure 1 and table 1 the amplitude function Mν(z) is seen to be a monotonic function
of z that approaches the plane wave value of Mν(z) �

z→∞ 1 in the far field. Nevertheless in the

near field, completely different behaviour is exhibited by Mν(z) depending on the order being
less than, equal to or greater than 1/2. This can be explained by examining the values of ϕν(z)

and χν(z) at the origin:

0 � ν < 1/2 ϕν(0) = 0 χν(0) = 0 Mν(0) = 0

ν = 1/2 ϕν(0) = 0 χν(0) = −1 Mν(0) = 1

1/2 < ν < ∞ ϕν(0) = 0 χν(0) = −∞ Mν(0) = +∞.

Plots of ϕν(z) and χν(z) intrinsic waveforms for ν = 0 to 2 in steps of 1/2 are presented in
figures 9 and 10. These illustrate the following features:

(a) the zeros, αν,s and βν,s , of the functions where the curves cross the z-axis,
(b) maxima and minima at the positions of α′

ν,s and β ′
ν,swhen the first derivatives of the

functions are zero and
(c) points of inflexion when the second derivatives of the functions are zero.
Hence αν,s and βν,s are general points of inflexion but for each trace ν > 1/2, a further

special point of inflexion is present at z = √
µ1. This is indicated by P1, P3/2 and P2 at

z = 0.8860, 1.4142 and 1.9365 for ν = 1, 3/2 and 2. It is moreover clear from figure 10,
why minima of χν(z) are present at β ′

0,1 and β ′
1/2,1 but absent for ν > 1/2.

A physical explanation of phase constant can now be given. All the plots in figure 9,
with the exception of ν = 1/2 which will be used as a reference, require some range of z in
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Figure 9. The ϕν(z) intrinsic waveform for ν = 0 to 2 in steps of 1/2. P1, P3/2 and P2 are the
positions of special points of inflexion when v = 1, 3/2 and 2.
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Figure 10. The χν(z) intrinsic waveform for ν = 0 to 2 in steps of 1/2. P1, P3/2 and P2 are the
positions of special points of inflexion when v = 1, 3/2 and 2.

which to adjust from an initial rate of phase change θ ′
ν(0) �= 1 to the far-field rate of unity.

Over this range there will then be an accumulation of a total phase gain for 0 � ν < 1/2 or
loss when ν > 1/2 of −γ 0

ν compared with the reference wave. Accordingly, the inclusion of
the phase constant in the ν = 1/2 wave will bring it into phase with the far-field behaviour
of ϕν(z):

ϕν(z) →
z→∞ sin

(
z − γ 0

ν

)
.

Figures 11 and 12 are graphs of ϕ′
ν(z) and χ ′

ν(z) intrinsic waveforms for ν = 0 to 2 in steps
of 1/2. These show that the maxima and minima of ϕν(z) and χν(z) become the zeros α′

ν,s

and β ′
ν,s , and the original points of inflexion P1, P3/2 and P2 have been converted into maxima
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Figure 11. The ϕ′
ν(z) intrinsic waveform for ν = 0 to 2 in steps of 1/2.
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Figure 12. The χ ′
ν(z) intrinsic waveform for ν = 0 to 2 in steps of 1/2.

and minima, respectively. The missing minima of figure 10 are therefore responsible for the
absence of solutions of β ′

ν,1 in table 4 for ν > 1/2.
Comparing ϕν(z) with χ ′

ν(z) in the near field again leads to a distinction among the three
ranges of order. This indicates that φν(z) < θν(z); 0 � ν < 1/2, φν(z) = θν(z); ν = 1/2
and φν(z) > θν(z); 1/2 < ν, since close to the origin χ ′

ν(z) jumps between negative, zero and
positive values with increasing order. Nonetheless in the far field

ϕν(z) � χ ′
ν(z) →

z→∞ sin
(
z − γ 0

ν

)
and

ϕ′
ν(z) � −χν(z) →

z→∞ cos
(
z − γ 0

ν

)
.

18



J. Phys. A: Math. Theor. 41 (2008) 065401 I K Ludlow

Appendix. Properties of Riccati–Bessel functions

A.1. Definitions

(a) Differential R–B equation for general function f (s)
ν (z)(

d2

dz2
+ 1 − µ1

z2

)
f (s)

ν (z) = 0, ν = � + δ for − 1/2 < δ � 1/2

and � = 0,±1,±2, . . . , (A1)

where µ1 = ν2 − 1/4 and s is a label 1– 4 specifying the kind of solution.
(b) Solutions for non-integer order, δ �= 0

f (1)
ν (z) = ϕν(z) (A2a)

f (2)
ν (z) = χν(z) = [cos νπ ϕν(z) − ϕ−ν(z)]

sin νπ
(A2b)

f (3)
ν (z) = ζ (1)

ν (z) = −i
[ϕ−ν(z) − e−ivπϕν(z)]

sin νπ
(A2c)

f (4)
ν (z) = ζ (2)

ν (z) = i
[ϕ−ν(z) − eivπϕν(z)]

sin νπ
. (A2d)

(c) Solutions for integer order, δ = 0

f
(1)
� (z) = ϕ�(z) (A3a)

f
(2)
� (z) = χ�(z) = 1

π

[
∂ϕν(z)

∂ν
− (−1)�

∂ϕ−ν(z)

∂ν

]
ν→�

(A3b)

f
(3)
� (z) = ζ

(1)
� (z) = ϕ�(z) + iχ�(z) (A3c)

f
(4)
� (z) = ζ

(2)
� (z) = ϕ�(z) − iχ�(z). (A3d)

A.2. Wronskian

W {ϕν(z), ϕ−ν(z)} = − sin νπ (A4a)

W {ϕν(z), χν(z)} = 1. (A4b)

A.3. Recurrence relations

A complete set of R–B functions can be generated by the recurrence relations:

f
(s)
ν+1(z) = (ν + 1/2)

z
f (s)

ν (z) − df (s)
ν (z)

dz
(A5a)

f
(s)
ν−1(z) = (ν − 1/2)

z
f (s)

ν (z) +
df (s)

ν (z)

dz
. (A5b)
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A.4. Ascending series

(a) When the order ν is not an integer:

ϕν(z) = √
π

[ z

2

] 1
2 +ν

∞∑
p=0

1

p!�(1 + p + ν)

[
− z

4

2
]p

(A6a)

ϕ−ν(z) = √
π

[ z

2

] 1
2 −ν

∞∑
p=0

1

p!�(1 + p − ν)

[
− z

4

2
]p

(A6b)

χν(z) = cos νπ ϕν(z) − ϕ−ν(z)

sin νπ
. (A6c)

(b) When the order ν = � is an integer:

ϕ�(z) = √
π

[ z

2

] 1
2 +�

∞∑
p=0

1

p!(p + �)!

[
−z2

4

]p

(A7a)

χ�(z) = − 1√
π

[ z

2

] 1
2 − �

�−1∑
p=0

(� − p − 1)!

p!

[
z2

4

]p

+
1√
π

[ z

2

] 1
2 +�

∞∑
p=0

{
2 ln

[
z
2

] − ψ(p + 1) − ψ(p + � + 1)
}

p!(p + �)!

[
−z2

4

]p

(A7b)

in which ψ(p) is the Digamma function such that ψ(p) = −γ +
∑p−1

k=1 k−1;p � 2 and γ is
the Euler–Mascheroni constant.
(c) Specific examples are

ν = 0 : ϕ0(z) = √
π

[ z

2

] 1
2

∞∑
p=0

[−z2

4

]p

(p!)2

χ0(z) = 2√
π

[ z

2

] 1
2

∞∑
p=0

{
ln

[
z
2

] − ψ(p + 1)
}

(p!)2

[
−z2

4

]p
(A8a)

ν = 1 : ϕ1(z) = √
π

[ z

2

] 3
2

∞∑
p=0

[−z2

4

]p

p!(p + 1)!

χ1(z) = − 1√
π

[ z

2

]− 1
2

+
1√
π

[ z

2

] 3
2

∞∑
p=0

{
2 ln

[
z
2

] − ψ(p + 1) − ψ(p + 2)
}

p!(p + 1)!

[
−z2

4

]p

.

(A8b)

A.5. Asymptotic solutions

When ν is fixed and z → ∞,

ϕν(z) = Pν(z) sin
[
z − γ 0

ν

]
+ Qν(z) cos

[
z − γ 0

ν

]
(A9a)

χν(z) = −Pν(z) cos
[
z − γ 0

ν

]
+ Qν(z) sin

[
z − γ 0

ν

]
(A9b)

ζ (1)
ν (z) = −i [Pν(z) + iQν(z)] exp i

[
z − γ 0

ν

]
(A9c)
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ζ (2)
ν (z) = i [Pν(z) − iQν(z)] exp −i

[
z − γ 0

ν

]
, (A9d)

where

Pν(z) = 1 − µ1µ2

2!(2z)2
+

µ1µ2µ3µ4

4!(2z)4
+ · · · (A9e)

Qν(z) = µ1

1!(2z)
− µ1µ2µ3

3!(2z)3
+

µ1µ2µ3µ4µ5

5!(2z)5
− · · · (A9f )

and µ0 = 1, µs = ν2 − (s − 1/2)2. Hence

M2
ν (z) = P 2

ν (z) + Q2
ν(z)

= 1 +
1

2

µ1

z2
+

1 · 3

2 · 4

µ1µ2

z4
+

1 · 3 · 5

2 · 4 · 6

µ1µ2µ3

z6
+ · · · , (A9g)

which is infinite for general order but terminates to become polynomial when the order is
half-integer ν = � + 1/2.
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